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bstract

A hybrid model composed of a least square support vector machine (LS-SVM) model and a pressure-incremental model is developed to dispose
peration conditions of current, temperature, cathode and anode gas pressures, which have major impacts on a proton exchange membrane fuel cell’s
PEMFC) performance. The LS-SVM model is built to incorporate current and temperature and a particle swarm optimization (PSO) algorithm
s used to improve its performance. The optimized LS-SVM model fits the experimental data well, with a mean squared error of 0.0002 and a
quared correlation coefficient of 99.98%. While a pressure-incremental model with only one empirical coefficient is constructed to for anode and

athode pressures with satisfactory results. Combining these two models together makes a powerful hybrid multi-variable model that can predict a
EMFC’s voltage under any current, temperature, cathode and anode gas pressure. This black-box hybrid PEMFC model could be a competitive
olution for system level designs such as simulation, real-time control, online optimization and so on.

2006 Elsevier B.V. All rights reserved.
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. Introduction

As a clean energy conversion technology, proton exchange
embrane fuel cells (PEMFC) receive more attention because

f their low operating temperature, high power density, quick
tart-up capability and long lifetime. PEMFC is an interesting
echnology for the next generation of vehicles, portable units
nd so on [1]. A convenient PEMFC model can help greatly to
ontrol, simulate, and diagnose its behavior.

The PEMFC system is a nonlinear, multi-variable electro-
hemical system that is hard to model. A large number of
ublications on fuel cell modeling [2] target the complicated
nternal phenomena at the molecular level. Among them, two-
imensional and more complex three-dimensional, two-phase
nd non-isothermal models have been presented [3–5], these
ad very complicated expressions with some key physical
arameters that were even immeasurable. These mechanistic

odels usually focused on the electrochemistry, thermodynam-

cs and fluid mechanics. Typically, they were centered on the
embrane–electrode assembly (MEA), which could help ana-
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yze, design and optimize cell components in the laboratory
ontext. However, generally they were not suitable for system
evel research [6–9].

An empirical modeling approach is more practical in some
pplications. Researchers can deduce a PEMFC stack’s voltage
esponses without knowing the fuel cell’s complicated inter-
al characteristics. An active empirical modeling methodology
n recent years is based on machine learning theories, such as
rtificial neural networks [10–14] and support vector machines
SVM) [15,16]. By mapping the fuel cell voltage as a function
f various operational conditions, these black-box models agree
ell with experimental data. A common requirement in using

hese modeling approaches is that sufficiently representative data
hould be supplied in the training set to build a multi-variable
mpirical model. However, the numbers of the training data
eeded will increase dramatically when the numbers of input
ariables are increased, and these data may not be available.
or example, in our previous work [15], 100 experimental data
oints were used to build a two-variable PEMFC voltage model,
ut the number of experimental data points used by Li et al. [16]

ad achieved 1000 to build a five-variable PEMFC tempera-
ure model. Therefore, although current density, temperature,
athode and anode gas pressures are the most important con-
rollable variables for a PEMFC’s performance, few of those

mailto:Johnsonzzd@sjtu.edu.cn
dx.doi.org/10.1016/j.jpowsour.2006.11.030
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odels proposed can deal with all of them simultaneously. One
mportant reason is simply the absence of sufficient empirical
ata describing a broad range of operating conditions.

Herein, a hybrid modeling approach is proposed. In this way,
nly limited numbers of empirical data are needed to build a
odel which can deal with current density, temperature, cath-

de and anode gas pressures simultaneously. This model consists
f two parts: one is an empirical LS-SVM model that concerns
urrent density and temperature. Li et al. [16] built a dynamic
emperature model of a PEMFC by LS-SVM, incorporating tem-
erature, cooling water speed, hydrogen speed, air speed and
utput power. As a least square version of SVM, LS-SVM inher-
ts the superior generalization performance of SVM. Although
ts precision is slightly lower than SVM, LS-SVM significantly
educes computation time.

The key to obtaining a highly accurate SVM or LS-SVM
odel is to choose a proper set of hyper-parameters, but no

ffective guide lines have been put forward; some recommen-
ations on how to determine them are quite contradictory and
onfusing. A trial method is used in [15,16], which greatly relies
n the user’s experience. Therefore, particle swarm optimization
PSO) [17] is adopted in this paper to automatically determine
he best set of hyper-parameters.

The other part of the hybrid model is a pressure-incremental
odel taking account of both the cathode and anode gas pres-

ures. This model is developed based on the work of Amphlett
t al. [18] and Mann et al. [19]. After a slightly simplification,
he number of empirical coefficients was greatly reduced from

ore than ten to only one.

. Theoretical framework

For a given PEMFC system, the fuel cell terminal voltage
is influenced by many operating parameters: cell temperature

, cathode oxygen pressure PO2 , anode hydrogen pressure PH2 ,
elative humidity a, membrane humidity λ, etc. Accordingly,
uel cell voltage is given by

= f (I, T, PO2 , PH2 , λ, α, . . .) (1)

p to now, no model has ever been able to accommodate all
hese operating parameters. With the assumption that channel
as is fully saturated and membrane is fully humidified, Eq. (1)
s simplified as

= f (I, T, PO2 , PH2 ) (2)

lthough Eq. (2) is a simplified equation, it is still hard to model
ith traditional means due to its high dimensionality. A way to
eal with large scale complex systems is to break them into
ndependent simple submodels. Thus, we further separate Eq.
2) into two parts as

= VP0 (I, T ) + V�P (�PO2 , �PH2 ) (3)
he first part VP0 denotes a LS-SVM model, which predicts cell
oltages at different currents and temperatures under a constant
athode gas pressure P0

O2
and a constant anode gas pressure P0

H2
.

e refer to these constant pressures as reference pressures. The

2
A
T
7

Fig. 1. Framework of the hybrid pressure-incremental LS-SVM model.

econd part V�P denotes a pressure-incremental model, which
redicts voltage increment caused by oxygen pressure increment
PO2 and hydrogen pressure increment �PH2 . The structure of

ur proposed hybrid pressure-incremental LS-SVM model is
llustrated in Fig. 1.

. Optimized LS-SVM model

A support vector machine is a novel and powerful tool based
n statistical learning theories. It was originally developed at
T&T Bell Laboratories by Vapnik [20] for classification in
arious domains of pattern recognition, then expanded success-
ully to deal with regression problems more recently. The SVM
odel possesses a high degree of precision and does not require
pre-knowledge of the fuel cell. Comparing to artificial neural
etworks, the SVM model has a superior capability of general-
zation and it is also more robust. LS-SVM proposed by Suykens
nd Vandewalle [21] is a least square version of the standard
VM. Compared to SVM, LS-SVM significantly reduces the
omputation time with a tiny precision loss. Taking advantage
f the high computing efficiency of LS-SVM, PSO strategies are
sed to automatically optimize performance.

.1. Modeling a PEMFC by LS-SVM

Building a LS-SVM model need three steps:

Preparing training data.
Selecting optimal LS-SVM parameters to train the LS-SVM
model.
Predicting with the LS-SVM model.

n this study, experimental data provided by Laurencelle et al.
22] was used to generate the training data for the LS-SVM
odel. This fuel cell was composed of 36 cells; each cell with a
32 cm2 active area, graphite electrodes, and a Dow membrane.
ir pressure and hydrogen pressure were both regulated to 3 atm.
raining data were obtained at 24 ◦C, 31 ◦C, 39 ◦C, 56 ◦C and
2 ◦C and current densities from 0 mA cm−2 to 1000 mA cm−2.
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A difficult and vital step in obtaining a highly accurate LS-
VM model is to choose a proper set of hyper-parameters γ and
. γ determines the trade-off between model errors and model
omplexity, and σ is a internal kernel parameter. However, a few
ecommendations in the literature on how to determine them
re quite contradictory and confusing. Past literature [15,16]
sed a try and trail approach to determine the optimal hyper-
arameters, which needed much experience and patience by
evelopers. Therefore, a PSO algorithm was adopted to auto-
atically search for the best set of hyper-parameters.

.2. Optimizing the LS-SVM model by PSO

PSO is an evolutionary computation technique proposed by
ennedy and Eberhart [17]. PSO is an extremely simple algo-

ithm that requires only primitive and simple mathematical
perators, and is computationally inexpensive in terms of both
emory requirements and time. PSO is an algorithm based

n population (“swarm”). Each individual, called a particle,
ies in the D-dimensional problem space with a velocity that

s dynamically adjusted according to the flying experience of
he individual and its colleagues. Standard PSO algorithm is
escribed as follows:

i = wvi + c1Rand()(pi − xi) + c2rand()(pg − xi) (4)

i = xi + vi (5)

here xi represents the current position of particle i, vi is its
elocity, pi is the best position it experienced. pg represents
he best position among all particles in the swarm. w is iner-
ia weight, which regulates the trade-off between the global
xploration and local exploitation abilities of the swarm. The
cceleration constants c1 and c2 represent the weight of the
tochastic acceleration terms that pull each particle toward self
est position pi and swarm best position pg. Rand() and rand()
re two random functions with range [0,1]. The basic idea of
SO is that every particle’s action vi is excited by self cognition
i and social experience pg to fly to the globe best position.

Using model’s mean square error (MSE) as fitness, the opti-
ization problem is defined as follows

in
γ,σ

J(γ, σ) = MSE = 1

N

N∑
i=1

(Vi − V̂i)
2

(6)

here N is the numbers of experimental data, Vi is experimental
ata, and V̂i is predicted data. The process of implementing PSO
lgorithm to solve this optimization problem is as follows:

. Initialize: initialize a swarm of particles with random posi-
tions and velocities in the three-dimensional (γ , σ). Number
of particles is 10; w is set to 0.4; c1 and c2 are all set to 2.
Maximal generations number is 50.

. Evaluate each particle’s fitness: train the LS-SVM model by

current position (γ , σ)i, and then evaluate its fitness by Eq.
(6).

. Update each particles’ best fitness value pi according to the
result of step 2. If pi is best than the swarm’s best fitness
value pg, then reset pg to pi.

b
t
m
f
e

ig. 2. Voltage predicted by LS-SVM model. Asterisk data is the experimental
ata.

. Change the velocity and position of the particle according to
Eqs. (4) and (5), respectively.

. Loop to step 2 until maximal generations number is reached.

bove program is written in matlab language and implemented
n Matlab 7.0. The minimum MSE of 0.0002 is found at

γ, σ) = (650, 1.38)

s shown in Fig. 2, the LS-SVM model with optimal hyper-
arameters fits the experimental data quit well. The mean
quared error is 0.0002 and the squared correlation coefficient
s 99.98%.

To make the model incorporate cathode and anode pressures
esides current and temperature, a big problem should be con-
idered firstly: if increasing the input variables form (I, T) to
I, T, PO2 , PH2 ) to build a high dimensionality LS-SVM model,
huge amount of training data would be needed. Assuming n

raining data is needed for one variable, then n2 training data is
eeded to build a 2-variable model, and n4 training data is needed
o build a 4-variable model. The numbers of training data per
ariable increase exponentially with the number of variables to
aintain a given level of accuracy, and these data may not be

vailable. To solve this problem, a pressure-incremental model
as developed to expand our proposed LS-SVM model to other
ressures.

. Hybrid pressure-incremental LS-SVM model

.1. Pressure-incremental model background

An influential one-dimensional PEMFC model was proposed
y Amphlett et al. [18], and Mann et al. [19] further developed it

o a generalized form. Herein, a simplified pressure-incremental

odel is developed based on their work. When current is drawn
rom a fuel cell, the cell voltage Vcell is decreased from its
quilibrium thermodynamic potential Enernst (open circuit volt-
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ge). This voltage drop includes activation loss ηact, ohmic loss
ohmic and concentration loss ηcon. The concentration loss is
nly notable when the fuel cell works with an extremely high
urrent [23]; hence it can be neglected under normal conditions.
he basic expression for the cell voltage is:

cell = Enernst − ηact − ηohmic (7)

n Section 4.2, we firstly demonstrate the relationship between
ressure and each of the terms in Eq. (7), and then describe how
he pressure change affects them.

The first term is reversible thermodynamic potential Enerst,
hich is described by the Nernst equation. Using literature val-
es for the standard-state entropy change, the expression is:

nernst = 1.229 − (8.5 × 10−4) · (T − 298.15)

+(4.308 × 10−5) · T · (ln PH2 + 0.5 · ln PO2 ) (8)

here T is cell temperature (K), PH2 the partial pressure of
ydrogen at the anode catalyst/gas interface (atm), and PO2 the
artial pressure of oxygen at the cathode catalyst/gas interface
atm).

The second term is activation overvoltage ηact, which is com-
osed of anode and cathode activation overvoltages. Grouping
hem together, we can get a single expression as:

act = ξ1 + ξ2T + ξ3T ln CO2 + ξ4T ln I (9)

here CO2 is the concentration of dissolved oxygen at the
as/liquid interface, I is the cell current (A), and those four ξi

i = 1–4) are coefficients.
The third term in Eq. (7) is ohmic polarization, which is

aused by resistances in electron and proton transfers and other
ontact resistances. It can be expressed as:

ohmic = IRinternal = I(ξ5 + ξ6T + ξ7I) (10)

here ξi (i = 5–7) are coefficients. It can be concluded from Eq.
10) that the ohmic overvoltage is independent of the pressure,
hich has no influence on our pressure-incremental model and

ould be neglected. Afterwards, a pressure-incremental model
ith only one coefficient is developed.

.2. Pressure-incremental model

As shown in above discussion, hydrogen and oxygen pres-
ures influence the cell voltage through the terms PH2 , PO2 and
O2 . The partial pressure of hydrogen at the gas/liquid catalyst

ayer interface is [18]

H2 = Panode · [1 − 0.5xsat
H2O] (11)

he partial pressure of oxygen at the gas/liquid catalyst layer
nterface is [18]

O2 = Pcathode ·
[

1 − xsat
H2O − xchannel

N2
· exp

(
0.291 · I

0.832

)]

T

(12)

ig. 3 demonstrates the values of the exponent term
xp(0.291·I/T0.832) at 40 ◦C and 80 ◦C. From the figure it can

w
t

Fig. 3. Values of the exponent term at 40 ◦C and 80 ◦C.

e indicated that the difference with and without this term is no
ore than 0.25%, which is tiny enough to be neglected.
Hence, the partial pressure at the gas/liquid catalyst layer

nterface is simplified as

O2 = Pcathode · [1 − xsat
H2O − xchannel

N2
] (13)

he third term is the oxygen concentration CO2 [18]:

O2 = PO2

(5.08 × 106) · exp(−498/T )
(14)

et P0
O2

and P0
H2

standing for the given reference partial pres-
ures of oxygen and hydrogen, respectively, under which the
S-SVM model predicts the fuel cell voltages at different cur-

ents and temperatures. The oxygen increment and the hydrogen
ressure increment are defined as the proportional form:

O2 = kO2P
0
O2

, PH2 = kH2P
0
H2

(15)

here kO2 and kH2 are ratios that represent the pressure incre-
ents to P0

O2
and P0

H2
. With the substitution of Eq. (15) into Eq.

8), the thermodynamic potential can be rewritten as:

nernst = 1.229 − (8.5 × 10−4) · (T − 298.15)

+(4.308 × 10−5) · T · (ln kH2P
0
H2

+ 0.5 · ln kO2P
0
O2

)

= E0
nernst + (4.308 × 10−5) · T · (ln kH2 + 0.5 · ln kO2 )

with E0
nernst

= 1.229 − (8.5 × 10−4) · (T − 298.15)

+(4.308 × 10−5) · T · (ln P0
H2

+ 0.5 · ln P0
O2

) (16)

here E0
nernst is the thermodynamic potential under the reference

ressures P0
O2

and P0
H2

. With the substitution of Eqs. (15) and
14) into Eq. (9), the total overvoltage can be rewritten as

act = ξ1 + ξ2T + ξ3T ln kO2C
0
O2

+ ξ4T ln I

= ξ1 + ξ2T + ξ3T ln C0
O2

+ ξ4T ln I + ξ3T ln kO2

= η0
act + ξ3T ln kO2 with η0

act
= ξ1 + ξ2T + ξ3T ln C0
O2

+ ξ4T ln I (17)

here η0
act is the overvoltage under the known pressure P0. With

he substitution of Eqs. (16) and (17) into Eq. (7), the fuel cell
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Table 1
Errors between actual voltage and predicted voltage

No. PO2 /kO2 (atm) PH2 /kH2 (atm) Actual voltage (V) Predicted voltage (V) Error (%)

1 1.40/– 2.50/– 0.824 – –
2 3.10/2.2143 3.10/1.2400 0.851 0.8586 0.92
3 0.60/0.4286 2.00/0.8000 0.781 0.7924 1.38
4 0.60/0.4286 3.10/1.2400 0.792 0.7988 0.83
5 0.847 0.8473 0.04
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Fig. 4. Fuel cell voltages at 70 ◦C and 6.66 A. The dot line represents the refer-
e
P

v

FCs, ξ3 should be calibrated based on corresponding benchmark
experimental data. Since ξ3 is a constant for a given fuel cell, only
small numbers of experimental data should do this procedure
well.
3.10/2.2143 2.00/0.8000

oltage can be rewritten in an incremental format as:

= VP0 + V�P with V�P

= ξ3T ln kO2 + (4.308 × 10−5) · T · (ln kH2 + 0.5 · ln kO2 )

(18)

here VP0 is the voltage predicted by LS-SVM model under
he reference pressures P0

O2
and P0

H2
. Eq. (18) is our proposed

ressure-incremental model. By neglecting exponent term in Eq.
12), above algebraic manipulations greatly simplifies the elec-
rochemical model by reducing the empirical coefficients ξ1, ξ2,
3, ξ4, ξ5, ξ6, ξ7 and several other numeric empirical constants
o only one coefficient ξ3. All those non-pressure-dependent
erms are effectively aggregated into a single measured refer-
nce pressure. ξ3 is a coefficient which relates only to chemical
arameters of the cathode reaction and does not varies with
peration conditions. Simple experiments can easily determine
t. Mann et al. [19] provided a range of (7.6 ± 0.2) × 10−5,
nd the middle value of 7.6 × 10−5 is adopted in this
aper.

To verify our proposed model, experimental data proposed
y Amphlett et al. [24] is used, as listed in Table 1. These data
re obtained with temperature of 70 ◦C and current density of
.03 A cm−2. The first group is used as reference data for our
redictions, and the other four groups as data to verify our pre-
ictions. Based on the reference data, Eq. (14) can help predict
oltages under other pressures. Although our model is a sim-
lified form of Amphlett’s model, the modeling results are still
ighly consistent with the same measurements.

Fig. 4 shows the fuel cell voltages at 70 ◦C and 6.66 A. It is
hown that the oxygen partial pressure bears a stronger relation-
hip to the fuel cell voltage than the hydrogen partial pressure
oes. Thus, it will improve a fuel cell’s output power more effi-
iently if the cathode pressure is increased rather than the anode
ressure.

.3. Hybrid model

In Section 3.2, the optimized LS-SVM model has been
uilt to predict the voltages at air pressure and hydrogen pres-
ure are both 3 atm with temperature from 24 ◦C to 72 ◦C.
sing this prediction as reference data, our pressure-incremental

odel can be made to take the prediction at other cathode

nd anode pressures. As an example, the predictions at cath-
de/anode pressure at 1/1 atm and 5/5 atm are demonstrated in
ig. 5.

F
t

nce cell voltage under the working conditions in Table 1. In the upper curve,

O2 varies from 1 atm to 6 atm with PH2 kept at 2.5 atm. In the lower curve, PH2

aries from 1 atm to 6 atm with PO2 kept at 1.4 atm.

In order to get exact prediction results for different PEM-
ig. 5. Voltage predicted by the hybrid model under different pressures with
emperature from 25 ◦C to 70 ◦C.
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. Conclusions

In this study, we have developed a system-level hybrid model
f a PEMFC incorporating current, temperature, cathode and
node pressure. This model consists of two parts. One is an
mpirical LS-SVM model that concerns current and temper-
ture. After optimization by a PSO algorithm, this LS-SVM
odel possesses excellent agreement between the predicted

nd experimental results. Off-line optimizing of the LS-SVM
odel took 68 min on a Pentium IV 1.6 GHz computer with

12 MB RAM, but the predicting time was no more than 1 ms.
he other one is a pressure-incremental model that concerns
athode and anode pressures with only one empirical parame-
er. With little increase of benchmark experimental data in the
wo-variable LS-SVM model, the hybrid model could deal with
ll four operational variables. This hybrid black-box model-
ng methodology is most applicable for system level research
uch as simulation, real-time control, online optimization and
o on.

One flaw of our hybrid model is that it should be used under
odest changes in pressure, as significant changes in pressure
ill affect both the voltage and current, thus moving the fuel cell

way from the reference conditions under which the simplified
ressure-model was calibrated. It also will be invalid in low
umidity or under extremely high current density operations.
ence, further studies are still needed.
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